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ABSTRACT

This study revisits MJO predictability based on the ‘‘perfect model’’ approach with a contemporary model.

Experiments are performed to address the reasons for substantial uncertainties in current estimates of MJO

predictability, with a focus on the influence of atmospheric convection parameterization. Specifically, two

atmospheric convection schemes are applied for experiments with the NOAA Climate Forecast System,

version 2 (CFSv2). MJO potential predictability and prediction skill are assessed, with MJO indices taken as

the first two principal components of the combined fields of near-equatorially averaged 200-hPa zonal wind,

850-hPa zonal wind, and outgoing longwave radiation at the top of the atmosphere. Analyses indicate that the

convection scheme alone can have substantial influence on the estimate ofMJO predictability, with estimates

differing by asmuch as 15 days. Further diagnostics suggest that the shorter predictability with one convection

scheme is mainly caused by too weak of an MJO signal. The choice of atmospheric convection scheme also

exerts effects on the phase dependency of MJO predictability, and the ‘‘Maritime Continent prediction

barrier’’ is identified to be more evident with one convection scheme than with the other.

1. Introduction

There has been growing interest in forecasts at sub-

seasonal time scales (i.e., 3–4 weeks; National Research

Council 2010; NationalAcademies of Sciences, Engineering,

and Medicine 2016), which fills the gap between medium-

range weather forecast and seasonal prediction. The

Madden–Julian oscillation (MJO; Madden and Julian

1971), the primary mode of tropical intraseasonal cli-

mate variability in the boreal winter and spring, is con-

sidered to be a major source of global predictability on

the subseasonal time scale (e.g., Waliser 2011). With the

advances in models and initialization techniques (e.g.,

Vitart 2014), marked improvements in the dynamical

MJO predictions have been reported and now exceed

the skill of empirical predictions (Kim et al. 2018). For

example, at the National Centers for Environmental

Prediction (NCEP), Wang et al. (2014) found that the

Climate Forecast System, version 2 (CFSv2), had useful

MJO prediction skill out to 20 days and was significantly

better than its previous version (CFSv1) with skillful

predictions of 10–15 days (Seo et al. 2009). Similar skills

were also reported in the dynamical MJO predictions at

other operational centers such as the Predictive Ocean

AtmosphereModel forAustralia (POAMA;Rashid et al.

2011), the European Centre forMedium-RangeWeather

Forecasts (ECMWF; Vitart et al. 2010; Vitart 2014), and

Beijing Climate Center, China (Liu et al. 2017). Vitart

et al. (2017) and Lim et al. (2018) summarized the latest

dynamical MJO prediction capability by evaluating the

MJO predictions in models participating in the World

Weather Research Program–World Climate Research

Program (WWRP–WCRP) Subseasonal to Seasonal

Prediction (S2S) Project.

In the backdrop of recent advances inMJO prediction

skill, it is still an open question as to what extent further

gains in dynamical MJO prediction skill remain to be

achieved. A methodology to address this question is to

estimate the predictability of theMJO, which represents

an intrinsic property of the climate system and quantifies

the upper limit of MJO prediction skill. Relative to the

quantification of MJO prediction skill, however, there

are relatively fewer attempts to characterize the pre-

dictability of the MJO. The ‘‘perfect model’’ approach,Corresponding author: Jieshun Zhu, jieshun.zhu@noaa.gov
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first introduced by Waliser et al. (2003) in the MJO re-

search, is a commonly used way to characterize theMJO

predictability, which assesses a model’s ability to predict

its own MJO variability with forecasts starting from

slightly perturbing initial states. By applying the ap-

proach with an AGCM, Waliser et al. (2003) demon-

strated that the predictability of the MJO extended to

about 25–30 days for upper-level circulation fields and to

about 10–15 days for precipitation. Similar predictability

time scale was found by Reichler and Roads (2005)

with a different AGCM. Later, a longer time horizon for

MJO predictability was suggested with coupled GCMs

(e.g., Fu et al. 2008; Pegion andKirtman 2008). The early

models used in these MJO predictability studies, how-

ever, were generally poor in simulating the MJO (e.g.,

Zhang et al. 2006).

During the recent years when extensive hindcast

datasets (e.g., the S2S hindcast dataset) became avail-

able, the MJO predictability was reevaluated (e.g.,

Rashid et al. 2011; Kim et al. 2014; Neena et al. 2014;

Liu et al. 2017). For example, Neena et al. (2014)

conducted a comprehensive analysis about the MJO

predictability based on hindcasts by eight coupled

models participating in the Intraseasonal Variability

Hindcast Experiment (ISVHE), and they found that

the MJO predictability was highly model dependent,

ranging from 30 to.45 days. The recent review by Kim

et al. (2018) not only synthesized the latest progress in

the MJO prediction but also briefly described progress

in MJO predictability, studies of which were mostly

based on the hindcast datasets. Even though the ex-

isting hindcast datasets provide an opportunity to up-

date previous MJO predictability estimates, they are

not sufficient to isolate influences of individual factors

(e.g., the role of atmospheric convection scheme) in the

uncertainties of predictability estimates, because vari-

ous models with different model physics, resolutions,

and initialization procedures, together with different

ensemble members [e.g., ranging from 4 to 11 in Neena

et al. (2014)], are generally used to generate these

datasets.

The latest hindcast-based predictability studies were

generally based on contemporary models, but one of

their shortcomings is the use of perfect model approach

with ensemble of forecasts initialized from observa-

tional analysis (e.g., Waliser et al. 2003; Reichler and

Roads 2005; Fu et al. 2008; Pegion and Kirtman 2008).

When forecasts are initialized from observed analyses,

an initial imbalance (or initial shock) occurs as a result of

mismatches between model and observed states. The

initial shock could exert effects on the estimates of MJO

predictability. This approach could be contrasted with

an experimental setup where forecasts from a model are

initialized from initial states taken from its own long-

term simulation, and thereby avoiding the influence of

initial shock on the estimate of predictability.

The importance of understanding possible reasons for

uncertainties in current estimates forMJOpredictability

(Neena et al. 2014) is that the gap between predict-

ability and actual prediction skill provides the moti-

vation for further efforts for model improvement

(National Research Council 2010), and therefore errors

in their estimates need to be quantified. In addition to

specifics of forecast configuration (e.g., the specification

of initial conditions) to estimate MJO predictability,

the MJO simulations have been found to be highly

sensitive to convective parameterization (e.g., Wang

and Schlesinger 1999; Zhang and Mu 2005; Bechtold

et al. 2008; Lin et al. 2008; Zhu et al. 2017b), repre-

sentation of air–sea coupling (e.g., Waliser et al. 1999;

Kemball-Cook et al. 2002), and model resolution

(particularly the atmospheric vertical resolution; Inness

et al. 2001). Few studies, however, have addressed the

influence of such sensitivities on the estimates of predict-

ability, which become even more complicated when com-

binedwith influences of the initial shock as discussed above.

In this paper, we revisit the MJO predictability based

on the perfect model framework with CFSv2 (Saha et al.

2014), the current operational model applied at NCEP.

Our focus is quantifying the effect of convection schemes

on the estimate of MJO predictability where model fore-

casts are from initial states taken from themodel simulation

itself, thereby avoiding the influence of initial shock in

estimating predictability. The focus on the convective

parameterization in atmospheric models is because it

has been considered of foremost importance in influencing

the characteristics of MJO simulations (e.g., Zhang et al.

2006). For example, studies suggest that the simulated

MJO is strongly sensitive to the criteria for the onset of

the convection, such as the convection entrainment rate

and critical relative humidity (Wang and Schlesinger

1999; Zhang andMu 2005; Bechtold et al. 2008; Lin et al.

2008). MJO representation in the ECMWF Integrated

Forecast System has been attributed to improved rep-

resentation of convection and diffusion (Bechtold et al.

2008). Based on CFSv2, Zhu et al. (2017b) also found

that the MJO simulations strongly depended on the

choice of convection schemes, and the use of the

Relaxed Arakawa–Schubert (RAS) cumulus param-

eterization (Moorthi and Suarez 1992, 1999) in their

study produced a significantly better MJO eastward

propagation than the simplified Arakawa–Schubert

(SAS) cumulus parameterization (Pan and Wu 1995).

Their diagnostics further indicated that the use of RAS

could realistically represent the MJO-related air–sea

interactions; in contrast, the use of SAS unrealistically

4740 JOURNAL OF CL IMATE VOLUME 33

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:32 PM UTC



simulated the intraseasonal wind variability resulting in

significant biases in latent heat flux and in SST vari-

ability. Unrealistic SST variations, in turn, degraded the

MJO simulation by affecting SST-modulated heat fluxes

and the boundary layer moisture convergence or surface

moist static energy (e.g., Flatau et al. 1997; Maloney and

Sobel 2004).

Given the critical role of convective parameteri-

zation in MJO simulations, it is possible that the large

uncertainties in current estimates for MJO predict-

ability (Neena et al. 2014) may be largely due to

differences in convective parameterization schemes.

The possibility is addressed in this study by per-

forming predictability experiments with the RAS and

SAS schemes, respectively. In addition, we will also

investigate the influence of initial shock at the start of

model forecast on the estimate of MJO predictabil-

ity, and the influence of convection schemes on the

so-called Maritime Continent prediction barrier is

also discussed.

2. Model, experiments, and datasets

a. Model

As in the study of Zhu and Kumar (2019), CFSv2

(Saha et al. 2014) is used, but there is one difference in

the version used in this study. The atmospheric com-

ponent of the CFSv2 (Saha et al. 2014) uses the 2007

version of the NCEP operational GFS, and the SAS

cumulus parameterization (Pan andWu 1995) is used as

its convection scheme. In this study, the 2011 version of

GFS is used, but the model physics are still configured as

in Saha et al. (2014). In the 2011 version of GFS, in

addition to SAS, there are two additional built-in con-

vection schemes including the RAS scheme (Moorthi

and Suarez 1992, 1999) and the SAS, version 2 (SAS2),

scheme (Han and Pan 2011). In a study about how the

MJO-related tropical convection was simulated in the

context of differences in various SST analyses, Wang

et al. (2015) tested the three convection schemes in an

uncoupled framework and found that the impacts of

the SST analyses depend on the model physics. Zhu

et al. (2017a) also applied the three schemes in a low-

resolution version (Zhu et al. 2017c) of CFSv2 and

demonstrated a significant effect of atmospheric con-

vection schemes on ENSO predictions. In this study,

RAS and SAS are used for the MJO predictability

experiments, and the associated coupled model con-

figurations are referred to as RASmod and SASmod,

respectively. Our previous study (Zhu et al. 2017b)

has demonstrated that RASmod simulates the MJO

more realistically than SASmod, which was found to be

related to a more realistic air–sea feedback simulated in

RASmod than in SASmod.

b. Model experiments

Initialized from theClimate Forecast SystemReanalysis

(CFSR; Saha et al. 2010) state on 1 January 1980,RASmod

and SASmod were first integrated for 30 yr (Zhu et al.

2017b). After the 11th year of model simulation, restart

files of the two free runs were saved daily for ocean (and

sea ice) and every 12h for atmosphere (and land). Based

on these restart files, three sets of prediction experiments

(referred to as RAS, SAS, and SAS_RASic, respectively)

were conducted. We conducted the prediction experi-

ments for the boreal winters of the second 10-yr model

simulations (referred to as the ‘‘reference’’). For each

experiment, 45-day predictions were made every five

days starting from November 1 of each of the 10 model

years till the end of following March (31 cases in total

for each winter), with nine ensemble members for each

initial date. The nine ensemble members were gener-

ated by perturbing the atmospheric initial conditions

from the reference simulations, that is, by adding a small

fraction (1%–5%) of atmospheric state differences be-

tween the initial time and 12 h before or after. For each

of the three prediction experiments, there are a total of

10 yr 3 31 cases 3 9 members (52790) 45-day predic-

tions. The prediction procedure including initializations

is similar to that in Zhu and Kumar (2019).

In RAS and SAS, the prediction model was respec-

tively RASmod and SASmod, and the initial conditions

were respectively constructed from restart files saved

during the RASmod or SASmod free run (with the

generation of nine ensemblemembers described above).

The predictions are verified against the RASmod or

SASmod reference simulation. The comparison be-

tween RAS and SAS demonstrates the difference in

the estimates of MJO predictability resulting entirely

due to convection schemes.

In SAS_RASic, the prediction model was SASmod,

while its initial conditions were from the RASmod sim-

ulation. The experiment takes into account the fact that

SASmod is poorer in simulating theMJO than RASmod,

which is closer to observations (Zhu et al. 2017b; Fig. 1).

In SAS_RASic, the RASmod state was treated as

‘‘observations’’ and used for forecast initializations and

verifications. The SAS_RASic configuration, therefore,

mimics the operational MJO predictions where a biased

model is used for forecasts starting from the observed

initial states. Because of initial imbalances, forecasts

in SAS_RASic initially go through a spinup (or initial

shock) period, and the predictability estimate with it is

similar to the hindcast-based estimates (e.g., Rashid et al.

2011; Kim et al. 2014; Neena et al. 2014; Liu et al. 2017).
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Since this initial spinup does not exist for the RAS, the

comparison of SAS_RASic with RAS includes the impact

of convection parameterization on MJO predictions (on a

perfect forecast framework) together with the effect of

initial shock.

c. Analysis method and other datasets

To extract the MJO component in RASmod or

SASmod, a similar procedure as in Wheeler and

Hendon (2004) is adopted, and a combined empirical

orthogonal function (EOF) analysis for the equato-

rially averaged model 850- and 200-hPa zonal wind

(U850 and U200) and outgoing longwave radiation

(OLR) is done. Specifically, based on daily mean

fields from the last 20 years of simulations of RASmod

or SASmod, the following steps as employed in Wang

et al. (2014) are taken to define the MJO and the fol-

lowing text is adopted from there with minor modifica-

tions: 1) daily climatology of U850, U200, and OLR is

calculated as annual mean plus the first four harmonics

of the 20-yr average; 2) raw daily mean anomalies are

computed as the deviation of the total fields from the

climatology; 3) filtered anomalies are obtained by

applying a 20–100-day bandpass filter to the raw daily

mean anomalies; 4) EOFs are computed for the com-

bined OLR, U200, and U850 filtered anomalies aver-

aged between 158S and 158N and normalized by the

respective standard deviation of each field. The first two

leading EOFs (not shown) are taken as a representation

of the MJO in RASmod and SASmod simulations,

and their corresponding normalized principal com-

ponents (PC1 and PC2) are used to define its amplitude

[MJOamp 5 (PC12 1 PC22)1/2] and phase angle

{MJOpha 5 tan21[(2PC1)/PC2]}.

The reference and predicted MJO indices are ob-

tained by projecting the reference and predicted

anomalous fields onto the above two EOF modes and

are referred to as the real-time multivariate MJO

(RMM) indices (Wheeler and Hendon 2004). The

predicted field anomalies are obtained by removing a

background that is a function of starting date and lead

day and represents seasonal and interannual variability.

The background is computed as a fourth-order polyno-

mial fit over the 31 five-day periods (corresponding to

155 days) for each year and each lead time, but the ap-

plication of third- or fifth-order polynomial fit shows

negligible skill difference. For a consistent verification,

the same definition of anomalies is used for the verifying

FIG. 1. Composite MJO life cycle of intraseasonal anomalies of OLR (Wm22; shadings) and U850 (m s21;

contours) in (a) CFSR reanalysis (proxy for observations), (b) RASmod simulations, and (c) SASmod simulations.

For each phase, the composite value is the average of the days when the MJO phase angle is within the phase and

MJO amplitude is greater than 1. Phase 8 is repeated as phase 0 for continuity of the display.
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reference state, which is done by reconstructing the

reference datasets as if it were a forecast member for

each initial time and target day. The standard deviation

of the reference RMM indices is then used to normalize

the reference and predicted RMM indices. The MJO

prediction skill in terms of RMM indices is measured by

bivariate anomaly correlation coefficient (ACC) and

bivariate root-mean-square error (RMSE) by following

Lin et al. (2008).

This study is mostly based on a perfect model frame-

work, but a limited observational dataset is still used, for

example, the CFSR reanalysis (Saha et al. 2010) that is

used to initialize the long-term simulations and also for

the verification of simulated MJO characteristics.

3. Results

A brief comparison of MJO properties is first made

between RASmod and SASmod to demonstrate the

sensitivity of MJO simulations to atmospheric con-

vection schemes. Figure 1 compares the simulated

MJO life cycles together with that in the CFSR re-

analysis (Saha et al. 2010) by showing the composite

OLR and U850 anomalies as a function of eight MJO

phases (Wheeler and Hendon 2004). For each phase,

the composite values are calculated as the average of

20–100 filtered anomalies for the days when MJOpha

is within this phase and MJOamp is greater than 1. It

is noted that the MJO life cycle in CFSR (Fig. 1a) is

similar to the one derived with CFSR winds and

NOAA AVHRR OLR (Liebmann and Smith 1996),

for example, Fig. 2 in Wang et al. (2014).

Strong negative OLR anomalies (enhanced convec-

tion) are shown to propagate from the Indian Ocean (in

phases 2 and 3) across the Maritime Continent (in

phases 4 and 5) to the western Pacific (in phases 6 and 7).

Composite U850 shows consistent convergence (diver-

gence) in association with enhanced (suppressed) con-

vection. For model simulations, it is evident that the

eastward propagation of convections is generally well

captured by RASmod (Fig. 1b) but is ill organized in

SASmod with a substantially weaker propagation signal

(Fig. 1c). Differences in the MJO propagation between

RASmod and SASmod could be better presented by

regression analyses, for example, against the Indian

Ocean precipitation (Zhu et al. 2017b). In addition, for

more comprehensive diagnostics about the propagation

bias in SASmod one is referred to Zhu et al. (2017b) as

well, where the bias was attributed to its simulated in-

traseasonal wind variability that resulted in the simula-

tion bias in latent heat flux and SST variability.

Taking the initial conditions from the long integra-

tions with RASmod and SASmod, three sets of MJO

predictability experiments (i.e.,RAS,SAS,andSAS_RASic)

were next performed. As representative metrics of their

overall predictability, Fig. 2 shows the bivariate ACC

and RMSE of RMM indices between the ensemble

mean predictions and the corresponding indices in the

reference simulation, as a function of lead day. For

comparison, the operational MJO hindcast skill in CFSv2

[which also applies the SAS convection scheme and is

initialized from the observational analysis (i.e., CFSR)] for

the period of 1999–2010 (Wang et al. 2014; referred to as

CFSv2_9910) is also included. As expected, because of

the additional error sources from the initialization shock

in CFSv2_9910, its prediction skill drops the fastest with

lead time, with ACC and RMSE measures reaching

;0.1 and.1.8, respectively, at day 45. As concluded by

Wang et al. (2014), the CFSv2 operational predictions

have usefulMJO prediction skill out to 20 days when the

ACC is about 0.5 and the RMSE reaches about 1.4 (a

value expected when the climatology is used as the

forecast; Lin et al. 2008; Rashid et al. 2011).

The skill of RAS (black curves in Fig. 2) and SAS (red

curves in Fig. 2) measures the MJO potential pre-

dictability in CFSv2 with RAS and SAS convection

schemes, respectively. The effect of convection schemes

on MJO predictability is generally indistinguishable at

short lead times (e.g.,,12 days by ACC and,8 days by

RMSE; Fig. 2), but it becomes evident as lead time in-

creases. At lead times of .25 days, the two schemes

present ;0.1–0.2 ACC skill difference and ;0.2 RMSE

skill difference when forecasting their own respective

reference states, with RAS clearly having higher pre-

diction skill than SAS. Taking 0.5 as the threshold of

useful ACC skill, the MJO can be predicted .45 days

ahead in RAS, and only ;31 days is achieved in SAS,

but both significantly longer than current CFSv2 oper-

ational skill (;20 days; Wang et al. 2014).

The 15-day difference in predictability arising from

only switching between the SAS and RAS schemes in a

single model spans the range of predictability estimates

in Neena et al. (2014) for an ensemble of models in

which a multitude of factors (e.g., model physics, reso-

lutions, initializations and ensemble size) differ across

themultiplemodels. Thus, our results provide support for

the leading-order contribution of convection schemes to

substantial uncertainties in the estimated MJO predict-

ability (e.g., Waliser 2011; Neena et al. 2014).

In the SAS_RASic experiment, the SAS convection

scheme is used to predict the RAS reference state. This

experiment is akin to real forecast situations that start

from the observed atmospheric analysis and the forecast

model has biases. In contrast to SAS, the skill difference

of SAS_RASic relative to RAS is present at both short

and long leads. After first 10–15 days, the ACC skill in
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SAS_RASic decreases at a similar rate as in SAS and

CFSv2_9910. Considering the same SASmod model is

used in all the three set of predictions (but with different

initializations), the similar skill decrease rate at the

longer lead times (.10–15 days) suggests that at those

lead times the inherent predictability of SASmod (i.e.,

the skill as measured by SAS) control the evolution of

prediction skill in SAS_RASic and CFSv2_9910, but

their overall skill difference is related to initializations.

Next, we analyze why the MJO predictability for

RASmod is larger than for the SASmod (i.e., the dif-

ference between black and red curves in Fig. 2). The

predictability of a variable is determined by the relative

magnitude of the signal component versus the noise

component. For ensemble-based seasonal atmospheric

forecasts, predictability is quantified as the signal-to-

noise ratio where the signal is generally defined as

SST-forced atmospheric variability (quantified as the

variability of ensemble mean) and the noise is de-

fined as the atmospheric internal variability (quan-

tified as the variability of individual forecasts around

the ensemble mean) (e.g., Kumar and Hoerling 1995;

Rowell 1998). For forecasts as an initial value problem, a

signal-to-noise ratio (SNR) measure of predictabil-

ity can also be used for the MJO where the signal is

defined as hRMM12 1RMM22i and noise is defined

as hRMM102 1RMM102i, with the angle brackets de-

noting an average over all prediction cases (a total of

310 cases in our study), the overbar denoting an en-

semble mean (nine members in this study), and the

prime representing deviations from the ensemble mean.

In this formulation, the signal refers to the variability of

ensemble mean while the noise refers to the variability

of individual forecasts around the ensemble mean

(i.e., the forecast spread), and both quantities depend

on the forecast lead time.

Figure 3 shows the evolution of the signal and the

noise estimates with the forecast lead time. In SAS and

RAS, the noise component becomes as large as the

signal component at the lead time of around 27 and

38 days, respectively, which generally correspond to

the time when their ACCs drop to 0.6 (Fig. 2a). This

is also consistent with the analysis of Kumar and Hoerling

(2000) who in the context of seasonal predictions dem-

onstrated that for SNR of 1 the expected value of the

ACC was close of 0.65.

From the evolution of signal and noise, it is evident

that smaller predictability (or smaller ACC) in SAS is

caused by a weaker signal component than that in RAS

(solid curves in Fig. 3). In fact, a tendency for a weaker

FIG. 2. (a) Bivariate ACC and (b) bivariate RMSE for predictions of RAS (black), SAS (red), and SAS_RASic

(blue), along with CFSv2 operational predictions for 1999–2010 (gray; Wang et al. 2014). The horizontal line in

(a) is 0.5.
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MJO signal is also evident in the SASmod simulation

as shown in Fig. 1c. It is interesting to note that noise

component in the evolution of MJO is similar for sim-

ulations with both convective schemes. The analysis,

therefore, suggests that the MJO predictability of a

coupled system might be strongly controlled by the

strength of its own MJO signal (and its dependence on

the convective scheme), which could be a reason why

substantial differences appear in the MJO predict-

ability estimates with different coupled models (Neena

et al. 2014). In addition, the effect of initialization on

predictability estimate could be seen by comparing

SAS_RASic with RAS/SAS. Since initialized from

the same states, the signal remains the same between

SAS_RASic and RAS at the beginning, but it gradually

converges to the SAS one after first 15 days. The ini-

tialization effect affirms the problem in estimating the

MJO predictability with hindcast datasets (e.g., Rashid

et al. 2011; Kim et al. 2014; Neena et al. 2014; Liu

et al. 2017).

We further try to understand how forecast errors grow

with different convection schemes by comparing the

large-scale evolution of components fields that compose

RMM—that is, U850, U200, and OLR—in SAS_RASic

with RAS. Figure 4 presents the spatial correlation co-

efficients of predicted U850, U200, and OLR anomalies

(the daily anomalies are calculated relative to a fourth-

order polynomial fit as described in section 2) over

308E–908W, 308S–308N against the RASmod reference

as a function of the forecast lead time, averaged over all

310 prediction cases. In RAS, the forecast skill of OLR

(solid green curves in Fig. 4) clearly decays faster than it

does for the circulation fields (i.e., U850 and U200; solid

red and black curves, respectively, in Fig. 4), and their

difference becomes evident shortly after the forecast

initialization, suggesting that the large-scale flow is more

predictable than the smaller-scale convection.

The forecast skill differences between OLR and

large-scale flows are even larger in SAS_RASic im-

mediately after forecasts start. For instance, the skill

difference at day 1 in SAS_RASic is as large as that at

day 5 in RAS. This comparison indicates that, as a

result of the replacement of the RAS convection

scheme with SAS, the prediction skill of OLR (green

curves in Fig. 4) degrades faster than that of large-

scale flow (i.e., U850 and U200; the red and black

curves, respectively, in Fig. 4); at day 5, for example,

the reduction in OLR skill is 0.3 in contrast to 0.15 in

wind components. This is a consequence of an initial

adjustment due to inconsistency between the initial

conditions (taken from the RASmod simulation) and

the forecast model (SASmod). The initial adjustment

(or initial shock) is also likely to have a large influence

on the skill of MJO predictions in operational models.

This result also confirms a previous speculation by Xie

et al. (2012) and Ma et al. (2014) [who worked within

the framework of the so-called Transpose-AMIP ex-

periments (Williams et al. 2013)] that systematic errors,

particularly those associated with moist processes, de-

velop within 1–2 forecast days, are likely the result of

issues with model parameterization. This analysis sug-

gests that a further improvement in theMJO predictions

FIG. 4. Spatial correlation coefficients (averaged over all pre-

diction cases) of U850 (black), U200 (red), and OLR (blue) over

308E–908W, 308S–308N against RASmod simulations as a function

of lead time, in predictions of RAS (solid lines) and SAS_RASic

(dotted lines).

FIG. 3. Signal (solid lines) and noise (dashed lines) estimates for

predictions of RAS (black), SAS (red), and SAS_RASic (blue).
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could be expected by progress in convection parame-

terizations and reduction in the initial shock.

The effect of convection schemes on MJO predic-

tions initialized from phases 1 and 4 is shown in Fig. 5

that compares the composite OLR (shadings) and

U850 (contours) predictions between SAS_RASic

and RAS, respectively. Compared with the RASmod

reference (Figs. 5a,b), the most significant deficiency

in SAS_RASic (Figs. 5e,f) is that the propagation

of its predicted anomalies is too slow. For example,

for predictions starting from phase 1, the predicted

enhanced convection (negative OLR anomalies) in

SAS_RASic (Fig. 5e) is still largely within the Indian

Ocean by day 30 when the enhanced convection has

propagated into western Pacific in both RASmod

(the reference simulation) (Fig. 5a) and RAS (Fig. 5c).

FIG. 5. The evolutions of composite OLR (Wm22; shadings) and U850 (m s21; contours) starting from (left)

initial phase 1 and (right) initial phase 4 in (a),(b) RASmod simulations and predictions of (c),(d) RAS and (e),(f)

SAS_RASic.
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The propagation of U850 is also slow as represented by

the evolution of the boundary (the thick curves) be-

tween westerlies and easterlies. For instance, while the

east boundary in SAS_RASic (Fig. 5e) generally lies

west of date line during the 40-day forecast period, it

propagates well eastward and beyond the date line at

around day 25 in both RASmod (Fig. 5a) and RAS

(Fig. 5c). The propagation bias is also a feature of the

MJO in CFSv2 with the SAS convection scheme (Wang

et al. 2014; Zhu et al. 2017b). Another deficiency in

SAS_RASic is that the overall amplitude of its pre-

dicted OLR anomalies remains smaller than the reference

and the predicted by RAS during the forecast period. This

prediction bias can also be explained by the MJO feature

with the SAS convection scheme (i.e., Fig. 1c). Similar defi-

ciencies of SAS_RASic also exist in predictions starting

from phase 4 (Figs. 5b,d,f).

The choice of atmospheric convection scheme also

exerts influence on the phase dependency of MJO pre-

dictability. InmanyMJO prediction systems (e.g., Vitart

et al. 2007; Seo et al. 2009; Wang et al. 2014), low pre-

diction skill is documented when the MJO-associated

convection moves through the Maritime Continent,

generating a so-called Maritime Continent prediction

barrier problem. Figure 6 compares the dependence of

prediction skills on target phases and lead times among

RAS, SAS, and SAS_RASic, with phase 8 repeated as

phase 0 for the display of continuity. In particular, the

prediction skills are separately calculated for each MJO

phase by using target days (the days to be predicted)

when the reference (RASmod and SASmod) MJOpha is

within this phase. For two perfect predictability exper-

iments (i.e., RAS and SAS; Figs. 6a–d), both ACC and

RMSE measures exhibit small variations in skill within

short lead times, for example, ;25 days in RAS and

;20 days in SAS when the ACC is higher than 0.8

(Figs. 6a,c) and RMSE (Figs. 6b,d) is smaller than 1 for

all target phases. Beyond those lead times, larger skill

variations with target phase are seen in both predict-

ability experiments. In RAS (Figs. 6a,b), there is slightly

lower skill (smaller ACC and larger RMSE) for target

phase 4. More pronounced skill variations occur in SAS

in which significantly lower skill is seen for target phases

4 and 7/8, but better skill (larger ACC and smaller

RMSE) is seen in predictions for target phases 5 and 1.

In both RASmod (Fig. 1b) and SASmod (Fig. 1c), phase

4 corresponds to convection over theMaritime Continent

area. Thus, a lower skill for this phase indicates that

both RASmod and SASmod have difficulty in pre-

dicting the propagation of theMJO across the Maritime

Continent as in many other MJO prediction systems

(e.g., Vitart et al. 2007; Seo et al. 2009;Wang et al. 2014).

The Maritime Continent prediction barrier problem,

however, is clearly less evident when the RAS convec-

tion scheme other than SAS is used.

In SAS_RASic (Figs. 6e,f), skill variations with target

phase are also present at lead times longer than;25 days,

and the variations are stronger (weaker) than RAS (SAS).

Its skill variations are also featured by lower skill for target

phases 4 and 7/8, as in SAS. It should be clarified that the

phase dependency of skill in SAS_RASic does not repre-

sent an inherent feature of the predictionmodel alone (i.e.,

SASmod) because it also mixes the influence of initiali-

zations; instead, it represents a feature of the prediction

system as in most previous studies (e.g., Vitart et al. 2007;

Seo et al. 2009; Wang et al. 2014; Neena et al. 2014; Kim

et al. 2014). In contrast, the estimate with SAS (RAS)

represents an inherent feature of SASmod (RASmod).

4. Summary and discussion

In this study, we revisited the MJO predictability

based on the NOAAClimate Forecast System, version 2,

with the perfectmodel approach.We specifically addressed

the causes for ‘‘uncertainty’’ in current estimates about

MJO predictability (e.g., Neena et al. 2014), with a focus

on the effect of atmospheric convection parameteriza-

tions. In our experiments, two atmospheric convection

schemes were applied in CFSv2. The analysis suggests

that the 15-day difference arises from only switching

between the SAS and RAS schemes in a single model.

The difference spans the range of predictability esti-

mates in Neena et al. (2014) for an ensemble of models

in which a multitude of factors (e.g., model physics,

resolutions, initializations and ensemble size) differ

across the multiple models, which indicates the impor-

tance of convection schemes in studies about the MJO

predictability. However, as pointed out by a reviewer,

the finding cannot suggest that the convection scheme is

at the heart of the MJO predictability without further

experiments about how the MJO can also be influenced

by other factors that are parameterized in the model.

Further diagnostics suggest that the shorter predict-

ability with the SAS scheme was mainly caused by its

associated too weak MJO signal. Wang et al. (2015)

suggested that the weak MJO amplitude with an up-

dated SAS scheme (i.e., SAS, version 2; Han and Pan

2011) was consistent with its less intense convective

activity, which was related to its lower troposphere

being too dry as a result of a persistent weak shallow

convective moistening. We are not certain about whether

the same mechanism can explain the weak MJO sig-

nal with SAS, and additional sensitivity experiments

(e.g., changing the convection trigger in SAS) will be

necessary to understand the MJO simulation bias. In

addition, a more dynamical reason for the shorter
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predictability with SAS will also require assessment

based on some process-based metrics (e.g., dynamic-

oriented diagnostics; Wang et al. 2018) in addition to

current performance-based skill metrics (e.g., corre-

lation, RMSE), which is a common challenge in MJO

prediction research (Kim et al. 2018) but is under

consideration for our future project.

In the study, the effect of convection scheme was further

explored by comparing two experiments predicting the

same model MJO events. This comparison also dem-

onstrated the importance of convective parameteriza-

tions in model errors, particularly those associated with

moist processes. Thus, it is suggested that improving

the convection parameterizations will be an efficient

way to reduce model bias, and to improve our predic-

tion capacity, specifically in MJO.

In addition, while at present it remains unclear

whether the Maritime Continent prediction barrier

FIG. 6. MJO prediction skills in terms of (left) ACC and (right) RMSE, as a function of lead time and target phase,

in predictions of (a),(b) RAS, (c),(d) SAS, and (e),(f) SAS_RASic.
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problem represents an inherent feature of the MJO

or a model error (e.g., Neena et al. 2014; Kim et al.

2014), our experiments indicate that the choice of

atmospheric convection scheme has an influence on the

phase dependency of MJO predictability. In particular,

the problem is present in all experiments, but it is clearly

more pronounced in one experiment that exhibits a

larger MJO propagation bias and lower predictability.

This indicates that, even if the prediction barrier might

represent an inherent feature, it could be exacerbated by

biases in convection parameterizations.

We also note that our study is based on a specific model,

and the MJO predictability estimate is specific to CFSv2.

However, our methodology should be applicable to other

models, and it is a clean way to isolate the influence of one

factor (e.g., atmospheric convection schemes) from others

on current uncertainties in the estimates of MJO predict-

ability (e.g., Neena et al. 2014). In fact, MJO predictability

studies seem to have a similar problem as in the process-

based MJO studies (e.g., the role coupling effect) in which

‘‘farmore attention has been paid to inter-GCMvariations

[in the effects of coupling] than to intra-GCM variations’’

(DeMott et al. 2015). Thus, similar studies as ours with

diversemodels should be encouraged, which would not

only assess the model dependency of our conclusions,

but, more important, explore the influence of other

factors on estimates of MJO predictability.
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